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Abstract

Previous studies have established that Stoneham’s constant α2,3 =∑
n≥1 1/(3n23n

) is 2-normal, or, in other words, every m-long string of binary
digits appears in the binary expansion of α2,3 with precisely the expected lim-
iting frequency 1/2m. A more recent finding is that this constant is provably
not 6-normal. In this note we address the more general class of Stoneham
constants αb,c =

∑
n≥1 1/(cnbc

n
), for coprime integers b ≥ 2 and c ≥ 2. It

has been proven that αb,c is b-normal, but not bc-normal. Here we extend
this finding by showing that αb,c is not B-normal, where B = bpcqr, for inte-
gers b and c as above, p, q, r ≥ 1, neither b nor c divide r, and the condition
D = cq/pr1/p/bc−1 < 1 is satisfied. It is not known whether or not this is a com-
plete catalog of bases to which αb,c is nonnormal. We also show that the sum
of two B-nonnormal Stoneham constants as defined above is B-nonnormal.

1 Introduction

The question of whether (and why) the digits of well-known constants of mathematics
are statistically random in some sense has fascinated mathematicians from the dawn
of history. Indeed, one prime motivation in computing and analyzing digits of π is
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Table 1: Digit counts in the first trillion hexadecimal (base-16) digits of π. Note
that deviations from the average value 62,500,000,000 occur only after the first six
digits, as expected from the central limit theorem.

Hex Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

to explore the age-old question of whether and why these digits appear “random.”
The first computation on ENIAC in 1949 of π to 2037 decimal places was proposed
by John von Neumann so as to shed some light on the distribution of π (and of e) [8,
pg. 277–281].

Since then, numerous computer-based statistical checks of the digits of π, for
instance, so far have failed to disclose any deviation from reasonable statistical norms.
See, for instance, Table 1, which presents the counts of individual hexadecimal digits
among the first trillion hex digits, as obtained by Yasumasa Kanada. By contrast,
the early computations did reveal provable abnormalities in the behavior of e [11,
§11.2]. Figures 1 and 2 compare a random walk based on the base-4 digits of a
pseudorandomly generated real, compared with with a walk based on the binary
digits of π. In each case the “walk” is defined as follows: move up or down one unit,
depending on whether the binary digit in the given odd-numbered position is a zero
or a one, then move left or right depending on whether the next binary digit in an
even-numbered position is a zero or a one. For additional details and analysis, the
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reader should consult [2].
In the following, we say a real constant α is b-normal if, given the positive integer

b ≥ 2, every m-long string of base-b digits appears in the base-b expansion of α
with precisely the expected limiting frequency 1/bm. It is a well-established albeit
counter-intuitive fact that given an integer b ≥ 2, almost all real numbers, in the
measure theory sense, are b-normal. What’s more, almost all real numbers are b-
normal simultaneously for all positive integer bases (a property known as “absolutely
normal”).

The present perplexing situation is that whereas almost all real numbers are nor-
mal for all integer bases b ≥ 2, it has been frustratingly difficult to exhibit explicit
examples, even of reals that are normal just to a single given base b. The first con-
stant to be proven 10-normal is the Champernowne number, namely the constant
0.12345678910111213141516 . . ., produced by concatenating the decimal represen-
tation of all positive integers in order. Some additional results of this sort were
established in the 1940s by Copeland and Erdös [14].

The situation with regards to other, more “natural” constants of mathematics
remains singularly grim. Normality proofs are not available for any well-known
constant such as π, e, log 2,

√
2. We do not even know, say, that a 1 appears 1/2 of

the time, in the limit, in the binary expansion of
√

2 (although it certainly appears to,
from extensive empirical analysis). For that matter, it is widely believed that every
irrational algebraic number (i.e., every irrational root of an algebraic polynomial with
integer coefficients) is b-normal to all positive integer bases, but there is no proof.

Recently the present authors, together with Richard Crandall and Carl Pomer-
ance, proved the following: If a real y has algebraic degree D > 1, then the number
#(|y|, N) of 1-bits in the binary expansion of |y| through bit position N satisfies

#(|y|, N) > CN1/D (1)

for a positive number C (depending on y) and all sufficiently large N [3]. For
example, there must be at least

√
N 1-bits in the first N bits in the binary ex-

pansion of
√

2, in the limit. A related and more refined result has been ob-
tained by Hajime Kaneko of Kyoto University in Japan. He obtained the bound
in C(logN)3/2/[(log(6D))1/2(log logN)1/2] and extended his results to a very general
class of bases and algebraic irrationals [16]. However, each of these results falls far
short of establishing b-normality for any irrational algebraic in any base b, even in
the single-digit sense.

It is known that whenever α is b-normal, then so is rα and r+α for any nonzero
positive rational r [9, pg. 165–166]. It is also easy to see that if there is a positive
integer n such that integers a ≥ 2 and b ≥ 2 satisfy a = bn, then any real constant
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Figure 1: A uniform pseudorandom walk.

Figure 2: A random walk on the first two billion bits of π (normal?).
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that is a-normal is also b-normal. Recently Hertling proved an interesting converse:
If there is no such n, then there are an uncountable number of counterexamples,
namely constants that are a-normal but not b normal [15].

Moving in the other direction, Greg Martin has succeeded in constructing an
absolutely nonnormal number, namely one which fails to be b-normal for any integer
base b ≥ 2 [18]. We shall discuss b-nonnormal constants to a fixed base b below.

Numerous other known results relating to normality are summarized by Khosh-
nevisan [17] and also in [2].

2 A recent normality result

In 2002, one of the present authors (Bailey) and Richard Crandall showed that given
a real number r in [0, 1), with rk denoting the k-th binary digit of r, the real number

α2,3(r) : =
∞∑

k=1

1

3k23k+rk
(2)

is 2-normal. It can be seen that if r 6= s, then α2,3(r) 6= α2,3(s), so that these con-
stants are all distinct. Since r can range over the unit interval, this class of constants
is uncountable. So, for example, the constant α2,3 = α2,3(0) =

∑
k≥1 1/(3k23k

) =
0.0418836808315030 . . . is provably 2-normal (this special case was proven by Stone-
ham in 1973 [19]). A similar result applies if 2 and 3 in formula (2) are replaced by
any pair of coprime integers (b, c) with b ≥ 2 and c ≥ 2 [4].

More recently, Bailey and Michal Misieurwicz were able to establish 2-normality
of α2,3 by a simpler argument, by utilizing a “hot spot” lemma proven using ergodic
theory methods [5]. In [1], this proof was extended to the more general case αb,c,
although the result itself was established in the 2002 Bailey-Crandall paper. We
reprise this proof below, preceded by a statement of the “hot spot lemma” from [5].

Let A(α, y, n,m) denote the count of occurrences where the m-long binary string
y is found to start at position p in the base-b expansion of α, where 1 ≤ p ≤ n.

Lemma 1 (“Hot Spot” Lemma): If x is not b-normal, then there is some y ∈
[0, 1) with the property

lim inf
m→∞

lim sup
n→∞

bmA(x, y, n,m)

n
= ∞. (3)

Conversely, if for all y ∈ [0, 1),

lim inf
m→∞

lim sup
n→∞

bmA(x, y, n,m)

n
< ∞, (4)
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then x is b-normal.

Note that Lemma 1 implies that if a real constant α is not b-normal, then there
must exist some interval [r1, s1) with the property that successive shifts of the base-b
expansion of α visit [r1, s1) ten times more frequently, in the limit, relative to its
length s1 − r1; there must be another interval [r2, s2) that is visited 100 times more
often relative to its length; there must be a third interval [r3, s3) that is visited 1,000
times more often relative to its length; etc. Furthermore, there exists at least one real
number y (a “hot spot”) such that sufficiently small neighborhoods of y are visited
too often by an arbitrarily large factor, relative to the lengths of these neighborhoods.
On the other hand, if it can be established that no subinterval of the unit interval is
visited 1,000 times (for instance) more often in the limit relative to its length, then
this suffices to prove that the constant in question is b-normal (and thus that each
subinterval is visited with precisely the correct frequency, in the limit, relative to the
size of the subinterval).

Theorem 1 For every coprime pair of integers (b, c) with b ≥ 2 and c ≥ 2, the
constant αb,c =

∑
m≥1 1/(cmbc

m
) is b-normal.

Proof: We can write the the fraction immediately following position n in the base-b
expansion of αb,c as:

bnαb,c mod 1 =

(
∞∑

m=1

bn−cm
mod cm

cm

)
mod 1 (5)

=

blogc nc∑
m=1

bn−cm
mod cm

cm

 mod 1 +
∞∑

m=blogc nc+1

bn−cm

cm
. (6)

Note that the first expression can be generated by means of the recursion z0 = 0
and, for n ≥ 1, zn = (bzn−1 + rn) mod 1, where rn = 1/n if n = ck for some integer
k, and zero otherwise. For example, consider the case b = 3 and c = 4. The first few
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members of the z sequence are given as follows:

0, 0, 0,
1

4
, 3

4
, (repeated 6 times)

5

16
, 15

16
, 13

16
, 7

16
, (repeated 12 times),

21

64
, 63

64
, 61

64
, 55

64
, 37

64
, 47

64
, 13

64
, 39

64
, 53

64
, 31

64
, 29

64
, 23

64
, 5

64
, 15

64
, 45

64
, 7

64
,

(repeated 12 times), etc. (7)

Note here that the fraction 1/2 is omitted in the first set, the fractions
1/8, 3/8, 5/8, 7/8 are omitted in the second set, and the fractions with 32 in the
denominators are omitted in the third set. Nonetheless, this critical property holds,
both in this particular case and in general, so long as b ≥ 2 and c ≥ 2 are coprime
[4]: if n < cp+1 then zn is a multiple of 1/cp, and furthermore the set (zk, 1 ≤ k ≤ n)
contains at most t repetitions of any particular value, where the integer t depends
only on (b, c). For the case (2, 3), the repetition factor t = 3. For the case (3, 4),
t = 12.

These fractions (zk) constitute an accurate set of approximations to the sequence
bnαb,c mod 1 of shifted fractions of αb,c, since (zk) generates the first term of (6). In
fact, by examining (6) it can be readily seen that for all (b, c) as above and all n ≥ c,

|bnαb,c mod 1− zn| <
1

9n
(8)

(and in most cases is much smaller than this).
To establish that αb,c is b-normal via Lemma 1, we seek an upper bound for

bmA(αb,c, y, n,m)/n, good for all y ∈ [0, 1) and all m ≥ 1. A binary sequence y out
to some length m, translated to a subset of the real unit interval, can be written as
[r, s), where r = 0.y1y2y3 . . . ym, and s is the next largest base-b fraction of length m,
so that s− r = b−m. Observe that the count A(αb,c, y, n,m) is equal to the number
of those j between 0 and n− 1 for which bjαb,c mod 1 ∈ [r, s). Also observe, in view
of (8), that if bjα mod 1 ∈ [r, s), then zj ∈ [r − 1/(9j), s+ 1/(9j)).

Let n be any integer greater than b2m, and let cp denote the largest power of c
less than or equal to n, so that cp ≤ n < cp+1. Now note that for j ≥ bm, we have
[r − 1/(9j), s + 1/(9j)) ⊂ [r − b−m−1, s + b−m−1). Since the length of this latter
interval is no greater than 2b−m, the number of multiples of 1/cp that it contains
cannot exceed b2cpb−mc + 1. Thus there can be at most t times this many j’s less
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than n for which zj ∈ [r − b−m−1, s+ b−m−1). Therefore we can write

bmA(αb,c, y, n,m)

n
=

bm#0≤j<n

(
bjαb,c mod 1 ∈ [r, s)

)
n

≤
bm
[
bm + #bm≤j<n

(
zj ∈ [r − b−m−1, s+ b−m−1)

)]
n

≤
bm
[
bm + t(2cpb−m + 1)

]
n

< 2t+ 2, (9)

where t is the fixed repetition factor for (b, c), mentioned above. For a fixed pair of
integers (b, c), we have shown that for all y ∈ [0, 1) and all m > 0,

lim sup
n→∞

bmA(αb,c, y, n,m)

n
≤ 2t+ 2, (10)

so by Lemma 1, αb,c is b-normal. QED

This result was first proven by Bailey and Crandall in 2002 [4]. The proof above,
which utilizes the hot spot lemma, appeared in [1].

3 A general nonnormality result

By Theorem 1, the Stoneham constant α2,3 =
∑

k≥0 1/(3k23k
) is 2-normal. Almost

as interesting is the fact that α2,3 is not 6-normal, and, more generally, αb,c (where
b and c are restricted as above) is not bc-normal. This was first demonstrated in [1].
We will sketch the proof here for the case α2,3. The compete proof of an even more
general result is presented in the Appendix.

First note that the digits immediately following position n in the base-6 expansion
of α2,3 can be obtained by computing 6nα2,3 mod 1, which can be written as

6nα2,3 mod 1 =

blog3 nc∑
m=1

3n−m2n−3m

 mod 1 +
∞∑

m=blog3 nc+1

3n−m2n−3m

. (11)

Note that the first portion of this expression is zero, since all terms of the summation
are integers. That leaves the second expression.

Consider the case when n = 3m, where m ≥ 1 is an integer, and examine just the
first term of the second summation. We see that this expression is

33m−(m+1)23m−3m+1

= 33m−m−12−2·3m

= (3/4)3m

/3m+1. (12)
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0.
0130140430003334251130502130000001243555045432233011500243525320551352
3435410104300000000000000005141130054040555455303144250433435101241345
2351125142125134505503545015053522052044340452151505102411552500425130
0511244540010441311500324203032130000000000000000000000000000000000000
0000014212034311121452013525445342113412240220525301054204423552411055
4150155204350414555400310145303033532002534340401301240104453254343502
1420204324150255551010040433000455441145010313314511510144514123443342
3412400551313335045423530553151153501533452435450250055521453054234342
1530350125024205404135451231323245353031534552304115020154242121145201
5422225343403404505301233255344404431033324453321414150142334545424124
3203125340050134150245514404300000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000
0000000000313350542444431111055534141052014540213412313001424333133115
. . .

Table 2: Base-6 expansion of α2,3.

We can generously bound the sum of all terms of the second summation by 1.00001
times this amount, for all m ≥ 1, and by many times closer to unity for all m ≥ 2,
etc. Thus we have

63m

α2,3 mod 1 ≈
(

3
4

)3m

3m+1
, (13)

and this approximation is as accurate as one wishes (in ratio) for all sufficiently large
m.

Given the very small size of the expression (3/4)3m
/3m+1 for even moderate-sized

m, it is clear the base-6 expansion will have very long stretches of zeroes beginning
at positions 3m + 1. For example, by explicitly computing α2,3 to high precision, one
can produce the counts of consecutive zeroes Zm that immediately follow position
3m in the base-6 expansion of α2,3—see Tables 2 and 3.

In total, there 14256 zeroes in the first ten segments of zeroes, which, including
the last segment, span the first 59049 + 9487 = 68536 base-6 digits of α2,3. In this
tabulation we have of course ignored the many zeroes in the large “random” segments
of the expansion. Thus the fraction of the first 68536 digits that are zero is at least
14256/68536 = 0.20800747 . . ., which is significantly more than the expected value
1/6 = 0.166666 . . .. A careful estimate of the limiting fraction yields the desired
nonnormality result.
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m 3m Zm

1 3 1
2 9 3
3 27 6
4 81 16
5 243 42
6 729 121
7 2187 356
8 6561 1058
9 19683 3166

10 59049 9487

Table 3: Counts Zm of consecutive zeroes immediately following position 3m in the
base-6 expansion of α2,3.

It is worth pointing out here that in the parlance of Lemma 1, zero is a “hot spot”
for the base-6 expansion of α2,3. This is because all sufficiently small neighborhoods
of zero are visited too often, by an arbitrarily large factor, in a subsequence of the
shifted fractions of its base-6 expansion.

Here is a generalization of the result for general Stoneham constants αb,c:

Theorem 2 Given coprime integers b ≥ 2 and c ≥ 2, and integers p, q, r ≥ 1,
with neither b nor c dividing r, let B = bpcqr. Assume that the condition
D = cq/pr1/p/bc−1 < 1 is satisfied. Then the constant αb,c =

∑
k≥0 1/(ckbc

k
) is

B-nonnormal.

Proof: See the Appendix for the proof of this new result. QED

The following less general result than Theorem 2 first appeared in [1]:

Corollary 1 Given coprime integers b ≥ 2 and c ≥ 2, αb,c is bc-nonnormal.

Proof: This is a special case of Theorem 2 where p = q = r = 1. It follows by
checking the condition (see the hypothesis of Theorem 2) that D = c/bc−1 < 1, or,
equivalently, that log c < (c−1) log b. This condition can be verified as follows. First
assume that b ≥ 2 and c ≥ 3. In this case, the function f(c) = log c−(c−1) log 2 < 0,
so that log c < (c − 1) log 2 ≤ (c − 1) log b. Similarly, when b ≥ 3 and c ≥ 2, the
function g(c) = log c − (c − 1) log 3 < 0, so that log c < (c − 1) log 3 ≤ (c − 1) log b.
The remaining case b = 2 and c = 2 is not allowable, since b and c must be coprime.
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Thus the key condition c/bc−1 < 1 in the hypothesis of Theorem 2 is satisfied by all
allowable pairs (b, c). Hence αb,c is not bc-normal. QED

Example 1 (Normality and nonnormality in various bases) According to
Theorem 1, the constant α2,3 is normal base 2, and thus is also normal in base
4, 8, 16, 32, · · · (i.e., all powers of two). According to Theorem 2, α2,3 is nonnormal
base 6, 12, 24, 36, 48, 60, 72, 96, 120, 144, 168, 192, 216, 240, · · · . This list can be ob-
tained by checking the condition 3q/pr1/p < 4 for various candidate bases B = 2p3qr,
where p, q, r ≥ 1. Note that while all integers in this list are divisible by 6, not all
multiples of 6 are in the list.

However, there are many integer bases not included in either list. For example,
it is not known at the present time whether or not α2,3 is 3-normal, although it
appears to be. For example, statistical analysis of the first 83,736 base-3 digits of α2,3

(both single digits and 6-long strings of digits) found no deviations from reasonable
statistical norms. But there is no proof of 3-normality. Similar questions remain in
the more general case of αb,c, where b and c and coprime and at least two.

4 Sums of Stoneham constants

We now examine the normality or nonnormality of the sum of two Stoneham con-
stants.

Under the hypothesis b, c1, c2 ≥ 2, with (b, c1) coprime and (b, c2) coprime, we
know from Theorem 1 that αb,c1 and αb,c2 are each b-normal. But it is not known at
the present time whether the sum αb,c1 + αb,c2 is b-normal. However, the sum of two
such constants that individually are B-nonnormal, for some base B as given in the
hypothesis of Theorem 2, is also B-nonnormal:

Theorem 3 Let αb1,c1 and αb2,c2 be two Stoneham constants satisfying the conditions
of Theorem 2 to be B-nonnormal: b1 ≥ 2 and c1 ≥ 2 are coprime; B = bp1

1 c
q1

1 r1 for

integers p1, q1, r1 ≥ 1 with neither b1 nor c1 dividing r1; and D1 = c
q1/p1

1 r
1/p1

1 /bc1−1
1 <

1 (with similar conditions on b2, c2, p2, q2, r2 and D2). Then αb1,c1 + αb2,c2 is B-
nonnormal.

Proof: See the Appendix for the proof of this new result. QED

Example 2 (Nonnormality of sums in various bases) Consider the Stoneham
constants α2,3 and α2,5. By Theorem 1, both are 2-normal. Consider base 60 =
2p · 3q · r, where p = 2, q = 1 and r = 5. By checking the condition 31/2 · 51/2 < 22,
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we verify that α2,3 is 60-nonnormal, according to Theorem 2. In a similar way, write
60 = 2p · 5q · r, where p = 2, q = 1 and r = 3. Then by checking the condition
51/2 ·31/2 < 24, we verify that α2,5 is also 60-nonnormal. Thus, according to Theorem
3, α2,3 + α2,5 is 60-nonnormal.

5 Conclusion

As mentioned above, under the hypothesis that integers b ≥ 2, c1 ≥ 2 and c2 ≥ 2
are coprime, we know from Theorem 1 that αb,c1 and αb,c2 are each b-normal, but it
is not known at the present time whether the sum αb,c1 +αb,c2 is b-normal (although
from substantial empirical analysis of specific cases, this appears to be true). Such
a result, if it could be proven and extended, may yield a construction of an explicit
computable constant that is absolutely normal, namely b-normal for all integer bases
b ≥ 2 simultaneously.

One example of an absolutely normal constant, as defined in the previous para-
graph, is Chaitin’s omega constant. Fix a prefix-free universal Turing machine U :
(i.e., if instances U(p) and U(q) each halt, then neither p nor q is a prefix of the
other.) Then Chaitin’s omega is defined by

Ω =
∑

{U(p) halts}

2−|p|,

where |p| is the length of the program p in bits. In 1994, Cristian Calude [12]
demonstrated that omega is absolutely normal. Although a scheme is known to
explicitly compute the value of an initial segment of Chaitin’s constant (for a certain
encoding of a Turing machine), fewer than 100 bits are known [13]. Another explicit
construction has been given by Becher and Figueira [6]. However, unlike Chaitin’s
constant, while it is possible in principle to compute digits of the the Becher-Figueira
constant, it is nigh impossible in practice. It transpires that Alan Turing visited this
same issue many decades ago — as described in [7].

In any event, there is continuing interest in explicitly constructive real numbers
that are both absolutely normal and which can be computed to high precision with
reasonable effort.
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6 Appendix

Proof of Theorem 2 (Given coprime b ≥ 2 and c ≥ 2, B = bpcqr for integers
p, q, r ≥ 1, neither b nor c divide r, and D = cq/pr1/p/bc−1 < 1, the Stoneham
constant αb,c is B-nonnormal):

Let n = bcm/pc, and let w = np/cm, so that n = wcm/p. Note that for even
moderately large m, relative to p, the fraction w is very close to one. Let Qm be
the shifted fraction of αb,c immediately following position n in its base-B expansion.
One can write

Qm = Bnαb,c mod 1

=

(
m∑

k=0

bpn−ck

cqn−krn

)
mod 1 +

∞∑
k=m+1

bpn−ck

cqn−krn (14)

=
∞∑

k=m+1

bpn−ck

cqn−krn =
∞∑

k=m+1

cqwcm/p−krwcm/p

bck−wcm . (15)

(The first summation in (14) vanishes because all summands are integers.) Thus Qm

is accurately approximated (in ratio) by the first term of the series (15), namely

S1 =
1

cm+1

(
cqw/prw/p

bc−w

)cm

, (16)

and this in turn is very accurately approximated (in ratio) by

S ′1 =
Dcm

cm+1
, (17)

where D = cq/pr1/p/bc−1 as defined in the hypothesis. So for all sufficiently large
integers m,

S ′1(1− 1/10) < Qm < S ′1(1 + 1/10). (18)

Given that D < 1, as assumed in the hypothesis, it is clear from (17) that Qm

will be very small for even moderate-sized m, and thus the base-B expansion of αb,c

will feature long stretches of zeroes beginning immediately after position n, where
n = bcm/pc. In particular, given m ≥ 1, let Zm = blogB 1/Qmc be the number
of zeroes that immediately follow position bcm/pc. Then after noting that B ≥ 6
(implied by the definition of b, c, p, q, r above), we can rewrite (18) as

cm logB(1/D) + (m+ 1) logB c− 2 < Zm < cm logB(1/D) + (m+ 1) logB c+ 2.

(19)
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Now let Fm be the fraction of zeroes up to position cm + Zm. Clearly

Fm >

∑m
k=1 Zk

cm + Zm

, (20)

since the numerator only counts zeroes in the long stretches, ignoring many others
in the “random” stretches. The summation in the numerator satisfies

m∑
k=1

Zk >
c

c− 1

(
cm − 1

c

)
logB(1/D) +

m(m+ 3)

2
logB c− 2m

>
cm+1

c− 1

(
1− 1

cm+1

)
logB(1/D)− 2m. (21)

Thus given any ε > 0, we can write, for all sufficiently large m,

Fm >
cm+1

c−1

(
1− 1

cm+1

)
logB(1/D)− 2m

cm + cm logB(1/D) + (m+ 1) logB c

=
c

c−1

(
1− 1

cm+1

)
logB(1/D)− 2m

cm

1 + logB(1/D) + m+1
cm logB c

≥
c

c−1
logB(1/D)

1 + logB(1/D)
− ε = T − ε, (22)

where

T =
c

c− 1
· logB(1/D)

1 + logB(1/D)
. (23)

To prove our desired result, it suffices to establish that Fm > T > 1/B, which
means that infinitely often (namely on segments up to position cm +Zm for positive
integers m) the fraction of zeroes exceeds the “normal” frequency of a zero, namely
1/B, by the nonzero amount T − 1/B. But depending on the particular values of
b, c, p, q and r, the condition T > 1/B might not hold. Recall that the calculation
above ignores the many zeroes in the “random” portions of the expansion, and thus
the estimate T might not be sufficiently accurate to establish nonnormality, at least
not in the single-digit frequency sense.

However, a simple modification of the above argument can establish nonnormality
in the multi-digit frequency sense. Note that given any integer M > 1, then for all
m with Zm > M , we will see an M -long string of zeroes beginning immediately after
position n, where n = bcm/pc as above. Indeed, the condition that an M -long string
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of zeroes begins at position t will be fulfilled for Z̄m = Zm − M + 1 consecutive
positions beginning with t = n+ 1 = bcm/pc+ 1. Note that for sufficiently large m,
the modified count Z̄m is nearly as large as Zm. What’s more, when we sum Z̄k for
k = 1 to m, we obtain, as in (21) above,

m∑
k=1

Z̄k >
c

c− 1

(
cm − 1

c

)
logB(1/D) +

m(m+ 3)

2
logB c− (M + 1)m

>
cm+1

c− 1

(
1− 1

cm+1

)
logB(1/D)− (M + 1)m. (24)

But the small term (M+1)m in this expression disappears when we divide by cm and
take the limit as in (22) above. Thus we obtain exactly the same limiting bound T
as we calculated above in (23) for individual zeroes. Note that the natural frequency
for an M -long string of zeroes is 1/BM . Since T > 1/BM for all sufficiently large M ,
we conclude that αb,c is B-nonnormal. QED

Proof of Theorem 3 (If αb1,c1 and αb2,c2 are each B-nonnormal according to The-
orem 2, then αb1,c1 + αb1,c1 is B-nonnormal):

Given the hypothesized conditions, the proof of Theorem 2 established that the
base-B expansion of αb1,c1 has long stretches of zeroes beginning at positions P1,m =
bcm1 /p1c + 1 (for positive integers m), extending for length Z1,m ≈ cm1 logB(1/D1) ≈
P1,mp1 logB(1/D1), where D1 = c

q1/p1

1 r
1/p1

1 /bc1−1
1 . Similarly, the base-B expansion

of αb2,c2 has long stretches of zeroes beginning at positions P2,n = bcn2/p2c + 1 (for
positive integers n), extending for length Z2,n ≈ cn2 logB(1/D2) ≈ P2,np2 logB(1/D2),

where D2 = c
q2/p2

2 r
1/p2

2 /bc2−1
2 . In each case, the approximation indicated is as accurate

in ratio as desired, for all sufficiently large m or n, respectively.
Note that the base-B expansions of the two constants will share a long stretch of

zeroes, provided there exists some pair of integers (m,n) such that the corresponding
starting points P1,m and P2,n are very close in ratio. In that case, the corresponding
strings of zeroes will overlap for a length L that is close in ratio to the shorter of the
two lengths. In other words,

L ≈ min (Z1,m, Z2,n) ≈ min (P1,mp1 logB(1/D1), P2,np2 logB(1/D2))

≈ P1,m min (p1 logB(1/D1), p2 logB(1/D2)) = P1,mE, (25)

where E = min (p1 logB(1/D1), p2 logB(1/D2)), and where the approximations
shown are as close in ratio as desired for all sufficiently large m and n.
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What’s more, since the base-B expansions of αb1,c1 and αb2,c2 share this section
of zeroes, beginning at position P1,m ≈ P2,n and continuing for length L, so will the
base-B expansion of αb1,c1 + αb2,c2 .

Now suppose that we can construct a sequence of pairs of integers (mk, nk), where
the above condition, namely P1,mk

≈ P2,nk
culminating with Lk ≈ P1,mk

E, is met
for each k. At each k, even if we count only the zeroes in the common stretch Lk

(ignoring all zeroes in all stretches and all “random” segments that precede it), we
obtain, as an estimate of the fraction Fk of zeroes up to position P1,mk

+ Lk,

Fk ≥
Lk

P1,mk
+ Lk

≈ P1,mk
E

P1,mk
+ P1,mk

E
=

E

1 + E
, (26)

where the approximation is as accurate as desired (in absolute terms, not just in ratio)
for all sufficiently large k. Recall that E = min (p1 logB(1/D1), p2 logB(1/D2)) > 0
by hypothesis, so that that the expression E/(1+E) is independent of k and strictly
greater than zero.

Such a sequence of integer pairs (mk, nk) can be constructed as follows: First
consider the simpler special case where p1 = p2. Given ε > 0, we require that for all
sufficiently large pairs (mk, nk),

1− ε <
P1,mk

P2,nk

< 1 + ε. (27)

But this can equivalently be rewritten in any of the forms

1− ε <
cmk
1

cnk
2

< 1 + ε

−ε < mk log c1 − nk log c2 < ε∣∣∣∣mk

nk

− log c2
log c1

∣∣∣∣ <
ε

nk log c1
. (28)

This last condition is fulfilled if we specify, for the sequence of pairs (mk, nk),
the sequence of fractions produced by the continued fraction approximation for
log c2/ log c1. Recall that the error in the continued fraction approximation at each
step is less than the square of the reciprocal of the current denominator [11, pg. 373].
Thus we can write, ∣∣∣∣mk

nk

− log c2
log c1

∣∣∣∣ <
1

n2
k

<
ε

nk log c1
, (29)

for all sufficiently large k, which satisfies the condition in (28) (and thus in 27 also).
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Now consider the more general case where p1 is not necessarily the same as p2.
Given ε > 0, we require that for all sufficiently large pairs (mk, nk),

1− ε <
P1,mk

P2,nk

< 1 + ε

1− ε <
cmk
1 /p1

cnk
2 /p2

< 1 + ε

−ε < mk log c1 − nk log c2 + (log p2 − log p1) < ε. (30)

In this case, we can apply a generalization of the continued fraction algorithm pre-
sented in [10] (Algorithm 0.3) to construct the requisite sequence of integer pairs
(mk, nk). A simple normalization of (30) reduces it to the form required in [10].

In short, for any choice of coprime pairs of integers (b1, c1) and (b2, c2) satisfying
the hypothesis, we can construct an infinite sequence of positions (P1,mk

+ Lk) in
the base-B expansion of αb1,c1 + αb2,c2 such that the fraction Fk of zeroes up to
position P1,mk

+ Lk exceeds the fixed bound E/(1 + E). If this bound satisfies
E/(1 +E) > 1/B, we are done. If not, a simple extension of the preceding argument
to count the number of indices where an M -long strings of zeroes begins, as was done
near the end of the proof of Theorem 2, shows that the asymptotic bound E/(1+E)
also applies to the frequency of M -long strings of zeroes. Since for all sufficiently
large M , the condition E/(1 + E) > 1/BM is satisfied, this concludes the proof.
QED
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